Hooghly Mohsin College B. Sc. 2nd Semester (General) 1st Internal Assessment, 2022 Subject: CC/GE-2- Chemistry (General)

Time: 30 Minutes Full Marks: 10

General Instruction:

Write your Name, University Roll number, Registration number, Semester, Mobile no and Date at the top of 1st Page, then start writing.

Take a snapshot of your answer sheet(s) and save it PDF format as: ChemInt-your Univ. Roll no-Name of the department.

After saving send it to: hmconlineexamchem@gmail.com

Answer any five questions:

5x2=10

1.	Draw the Born Haber Cycle for the formation of solid common salt (NaCl).	2
2.	Define polarization and polarizibility of ions giving suitable examples.	2
3.	Explain with the help of Fajan's rule, which of the following compounds is	
	most Ionic and which is the least: NaCl, MgCl ₂ , AlCl ₃ .	2
4.	Using VSEPR theory, predict the shape of CIF_3 or I_3^- .	2
5.	Using VSEPR theory, predict the shape of SF ₄ or XeOF ₄ .	2
6.	Write the expression for pressure following the Kinetic Theory of gases and explain	n the
	terms.	2
7.	State the Principle of Equipartition of Kinetic Energy.	2
8.	Define degrees of freedom.	2
9.	Define mean free path of an ideal gas molecules.	2
10.	Write down the expression for bi-molecular collisions between the same type	
	molecules.	2
11.	Show that the half-life period of a second order reaction is inversely proportional to	the
	initial concentration of the reactant/s.	2
12.	Prove that $t_{75\%}$ = 2 x $t_{50\%}$ for a first order reaction (t stands for required time).	2